Aircraft Cargo Compartment Multi-Sensor Detector

By: Adityanand U. Girdhari

Rutgers University Advisors:
Dr. Tobias Rossmann
Dr. Constantine Polymeropolous

Federal Aviation Administration Advisor: Mr. David Blake

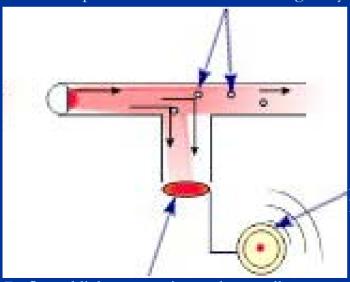
Federal Aviation Administration Fellowship Mechanical and Aerospace Engineering Department Rutgers University, Piscataway, New Jersey 08854

Motivation

- Current Cargo Compartment Detection Systems
 - False alarms to non-fire (nuisance) sources
 - Slow alarm response times to real fires
- 100:1 False to Real Fire Alarm Ratio
- Post Alarm Certified Procedure
 - Flight diversion/Declaration of Emergency situation
 - Compartment inspection
 - Fire extinguisher replacement
 - Passenger disappointment and panic
 - Loss of confidence in smoke detection systems

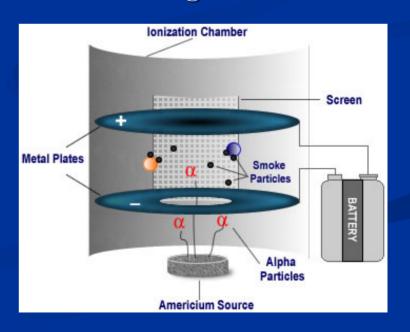
Outline

- Introduction
- Experimental Apparatus
- Experimental Results
- Multi-Sensor Algorithm Development
- Comparison with Current Detection Systems
- Comparison with Computational Fluid Dynamic Model
- Conclusions and Recommendations
- Acknowledgements


Code of Federal Regulations 14 CFR 28.858: "Cargo or Baggage Compartment Smoke or Fire Detection Systems"

- Visual indication to the flight crew within one minute after start of fire
- Capable of detecting a fire at a temperature significantly below that at which the structural integrity of the airplane is substantially decreased
- There must be a means to allow the crew to check in flight, the functioning of each fire detector circuit.
- The effectiveness of the detection system must be shown for all approved operating configurations and conditions.

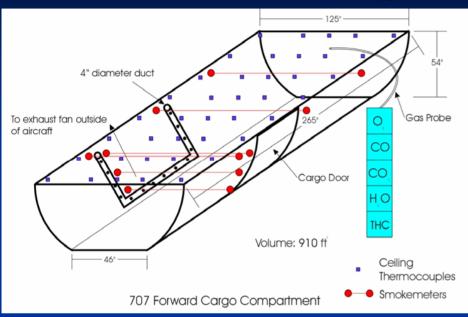
Current Aircraft Cargo Compartment Smoke Detection Systems

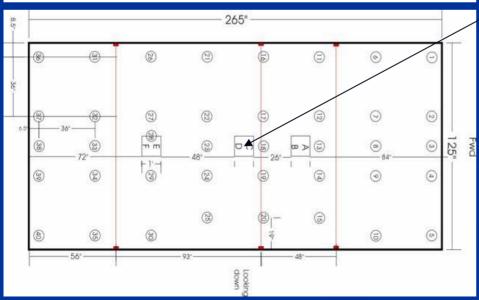

- Light Transmission Detectors
 - Primary Method
 - Light scattering by smoke particles
 - Smoldering Fires

Smoke particles in chamber deflect light rays

Activated photo cell Powers Alarm

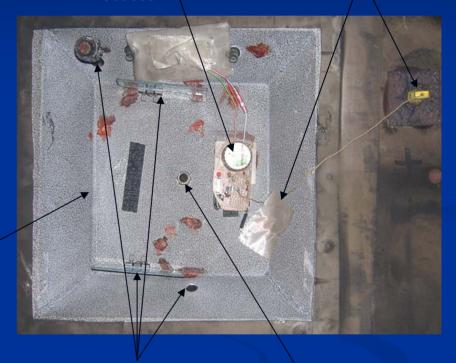
- Ionization Detectors
 - Utilized to Lesser Extent
 - Smoke/Generated Ion Collision
 - Flaming Fires



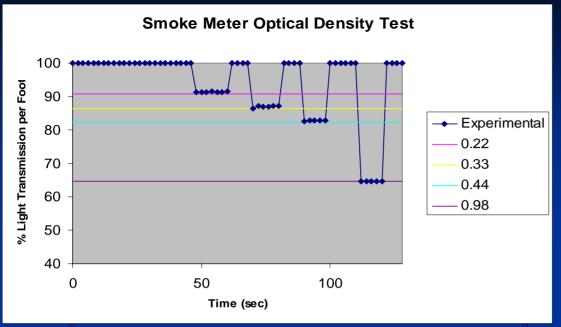

Deflected light rays activate photo cell

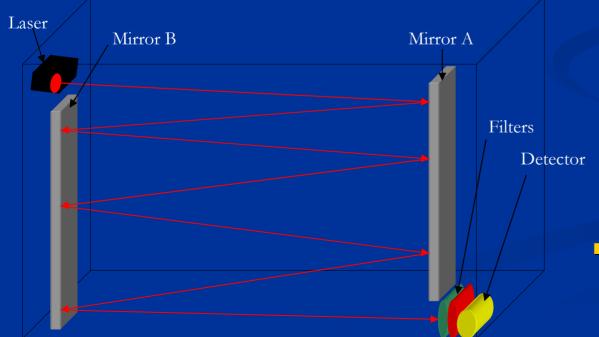
Thesis Objectives

- Reduce False Alarm Ratio
- Nuisance Immunity and Faster Alarm Response Times
- Detect Complete Fire Signature
 - Particulate levels from smoke and byproducts of combustion
 - Gas species concentrations
 - Temperature rise
- Employ a Multi-Sensor Detector
 - Optical Sensors/Smoke Meter (% Obscuration)
 - Thermal Sensors (Temperature)
 - Gas Sensors (CO and CO2)
 - Ionization Technology
- Develop an Alarm Algorithm
- Compare Experimental Results with Computational Results
 - Smoke Transport Computational Fluid Dynamic Model


General Experimental Design

Ionization Smoke
Detector


Thermocouple and Bead in Pan



Smoke Meter Gas Probe (Mirrors, Laser, Detector)

Central Recessed pan

Smoke Meter

THEORETICAL

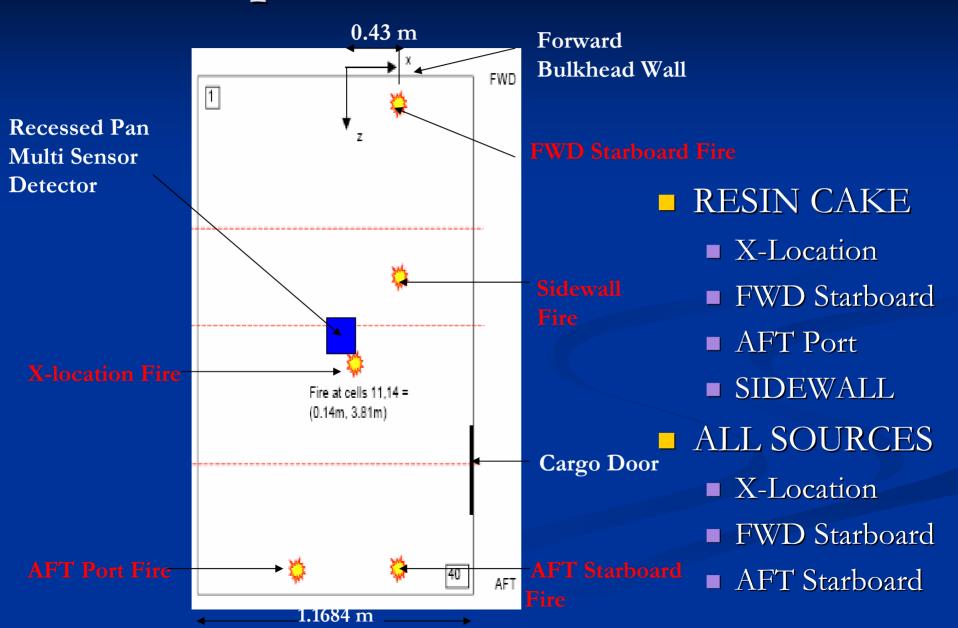
$$\frac{\%LT}{Filter} = \frac{1}{10^X} \times 100$$

EXPERIMENTAL

$$\frac{\% LT}{ft} = 100 \times \left[\frac{I}{I_0}\right]^{\frac{1}{L}}$$

INSTRUMENTATION

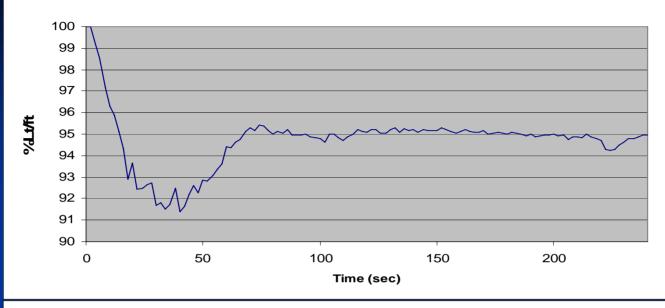
- 4" x 1.5" by 0.13" First Surface Mirrors (8 ½" Gap)
 - VLM High Quality Fixed Laser Diode Module-670 nm
- OEM Coaxial Silicon Photo Detector
- Band Pass Filter
- Infrared Filter

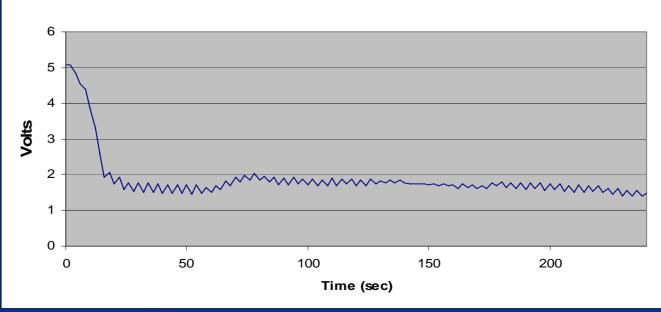

TECHNICAL STANDARD ORDER (TSO-C1d)

■ Alarm 60-96 %LT/ft

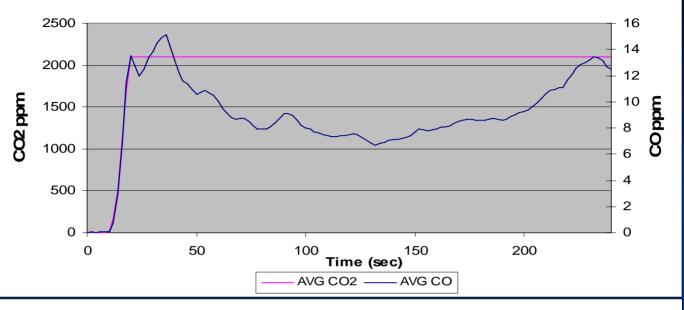
Experimental Testing

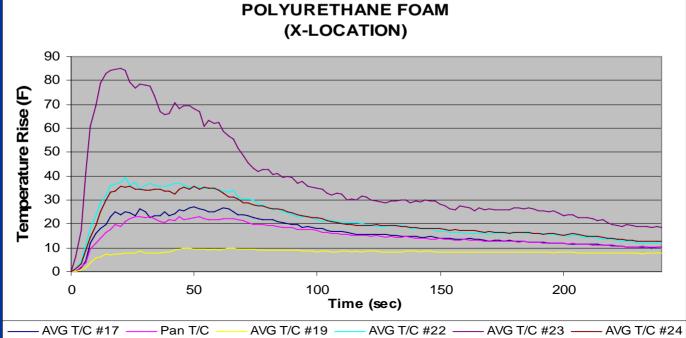
	Real Fire Sources	Nuisance Sources	
1.	Denatured Alcohol • (40 mL) • 4 minutes • Flaming	 Vaporizer Simulation of vapors from rapid pressure changes and aerosols 1 ½ minutes 	
2.	 Polyurethane Foam 9" x 4" x 4" foam block 4 minutes Flaming 	 Arizona Test Dust Simulation of dust from dirty containers or cargo itself Box set-up 1 minute 	
3.	 Alcohol Soaked Rags 10 mL Denatured Alcohol 1 rag with 1 square foot area 4 minutes Flaming 	 Heat Gun Simulation of container on hot day thermal energy released 2 minutes 	y and
4.	 Shredded Newspaper 123 in² pan, 6 in. height 2 minutes Flaming & Smoldering 	 4. Occupied Compartment Background CO₂ levels 5 minutes 	
5.	SuitcaseAssorted Fabrics5 minutesSmoldering	 Exhaust fumes Loading vehicle by cargo compart before door closes and taxiing airce 4 minutes 	

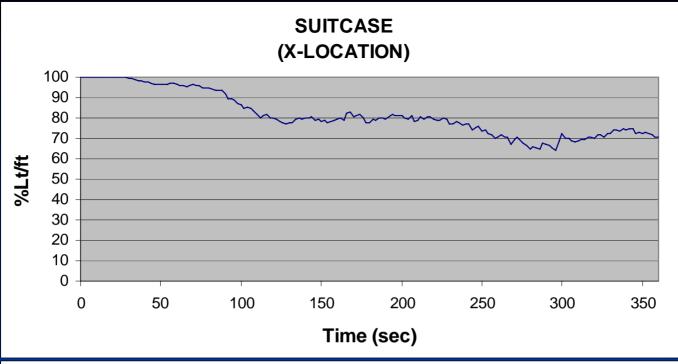

Experimental Locations

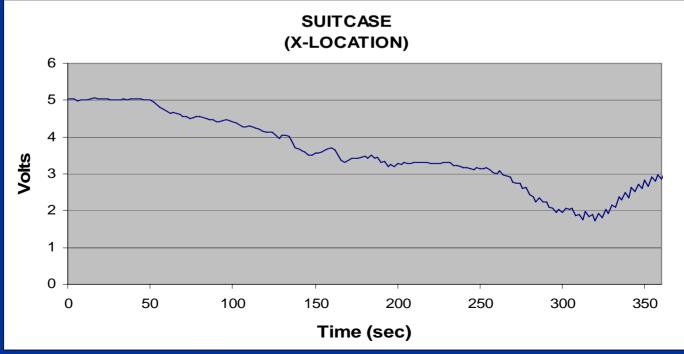

Experimental Fire Test Results

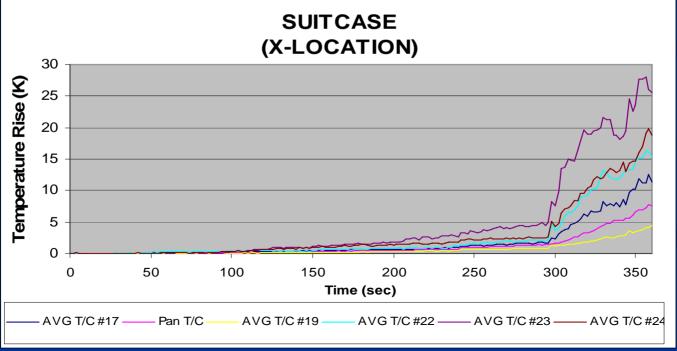
- Polyurethane Foam: <u>Flaming</u> Fire Source
- Suitcase: <u>Smoldering</u> Fire Source

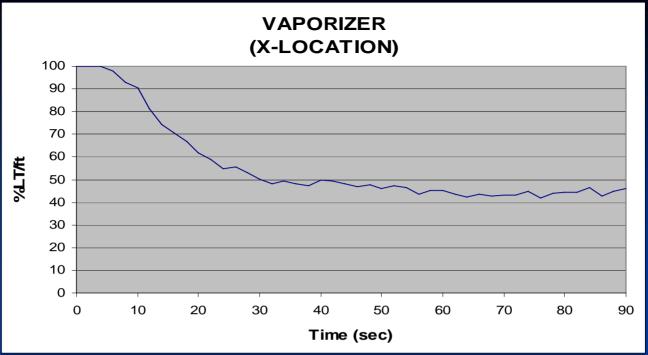


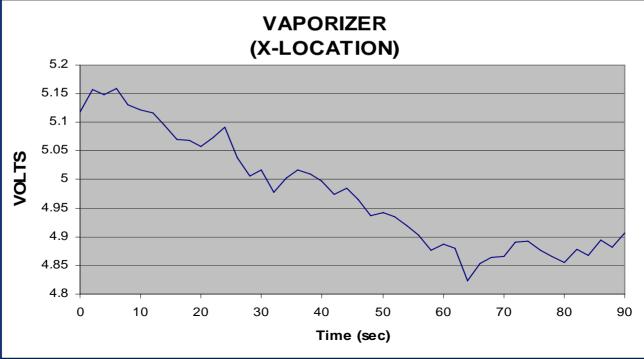


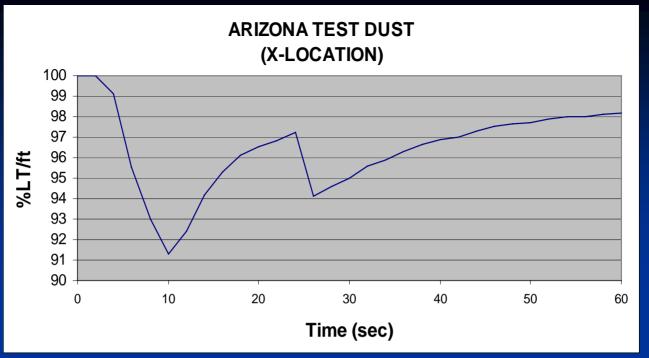

POLYURETHANE FOAM (X-LOCATION)





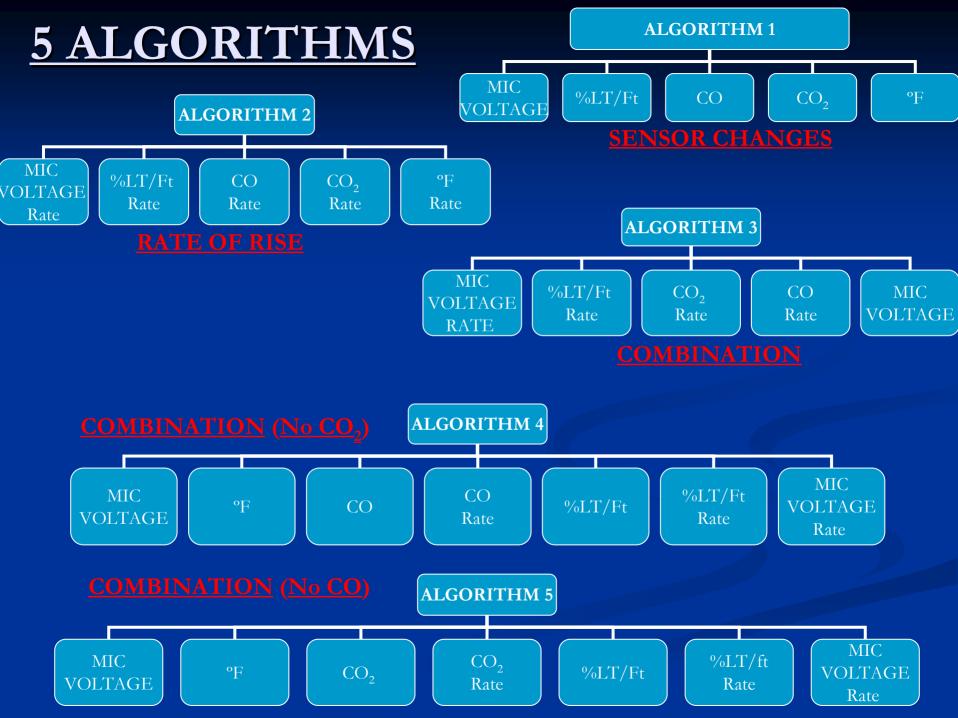






Experimental Nuisance Test Results

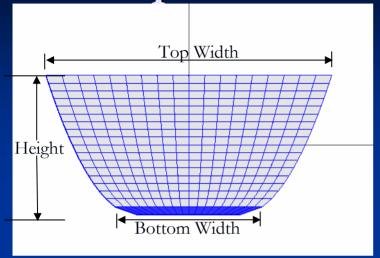
- Vaporizer
- Arizona Test Dust

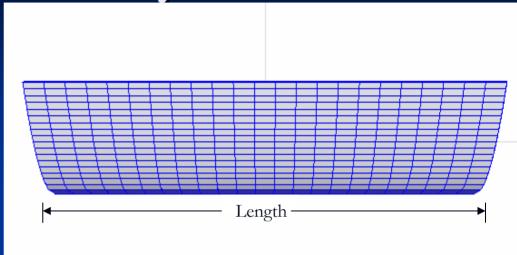

Algorithm Development

- Light Transmission per foot
- MIC Voltage Difference
- Temperature changes from ambient
- CO Gas Concentration changes from ambient
- CO₂ Gas Concentration changes from ambient
- Rate of Decline of % Light Transmission per foot
- Rate of Decline of MIC Voltage Difference
- Rate of Rise of Temperature
- Rate of Rise of CO Gas Concentrations
- Rate of Rise of CO₂ Gas Concentrations

Algorithm Methodology

MIC

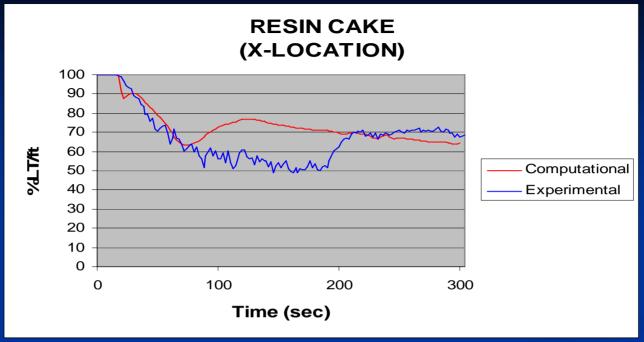

- Threshold voltage just below the extreme voltages for the majority of <u>nuisance sources</u>
- Smoke Meter
 - Threshold values close to 96 %LT/ft (TSO-C1d)
- Gas Probe
 - Threshold concentration just above the extreme CO and CO₂ gas concentrations for the majority of **nuisance sources**
- Thermocouple
 - Threshold temperature just above the extreme temperature levels for the majority of <u>nuisance sources</u>

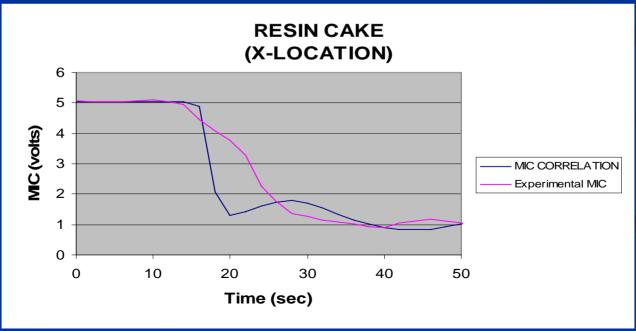


DETECTOR ANALYSIS Multi-Sensor vs. Current Detectors

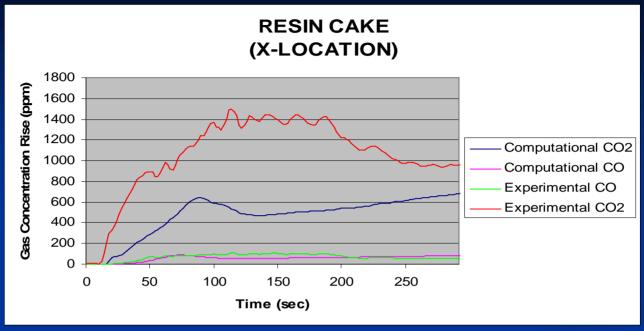
		AL	GORITH	MS	PHOTOELECTRIC	IONIZATION	
	1	2	3	4	5		
TOTAL TESTS	30	30	30	30	30	30	30
FAILURE	4	0	1	1	0	10	8
SUCCESSFUL	26	30	29	29	30	20	22
FAILURE %	13.33	0.00	3.33	3.33	0.00	33.33	26.67
SUCCESSFUL %	86.67	100.00	96.67	96.67	100.00	66.67	73.33

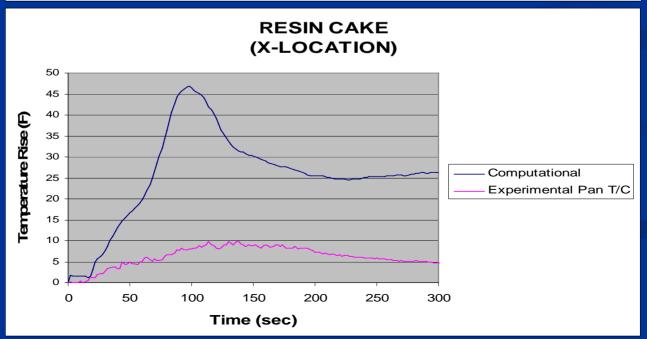
Computational Fluid Dynamic Model





- FAA Smoke Transport Model
 - Sandia National Laboratories
 - Source Terms
 - Volumetric Mass
 - Energy-Heat
 - FORTRAN 77 Mathematical Analyzer
 - Post Processor
 - Light Transmission Data
 - Temperature Data
 - Gas Concentration Data


- Experimental vs. Computational Results
- Resin Cake Common Fire Source
 - Volumetric Mass source term
 - Energy source term (Heat)
- CFD Validation
 - CFD Eliminate experimental testing
 - CFD Multi-Sensor Detector range
 - CFD Virtual Detector
- 1 Hour Computational Run-Time for 1 Min Experimental Real-Time


Computational vs. Experimental Results

Computational vs. Experimental Results

Experimental vs. Computational Alarm Time Comparison

TABLE 5.7 ALARM TIMES

LARIN HINE

(SECONDS)

FIRE SOURCES		AL	GORITH		PHOTOELECTRIC	IONIZATION				
	1	2	3	4	5					
EXPERIMENTAL					_					
Resin Cake (X-Location)	20	18	18	24	14	20	20			
PERIMETER TESTING										
Resin Cake (FWD)	70	48	48	50	48	54	84			
Resin Cake (AFT)	50	50	50	54	50	50	42			
Resin Cake (SIDEWALL)	38	26	26	38	26	36	42			
COMPUTATIONAL										
Resin Cake (X-Location)	20	18	18	20	18	18	18			
DEDIMETED TECTINO										
PERIMETER TESTING										
Dania Calia (EWD)	70	52	52	52	50	52	82			
Resin Cake (FWD)		50	50	50	46	48	48			
Resin Cake (AFT)	50 28	26	26	28	26	30	34			
Resin Cake (SIDEWALL)	20	20	20	20	20	30	34			
		ΔΙΔΡΙ	I M TIME (ARISON					
ALARM TIME COMPARISON (Computational vs. Experimental)										
Resin Cake (X-Location)	0	0	0	4	4	2	2			
Resin Cake (FWD)	0	4	4	2	2	2	2			
Resin Cake (AFT)	0	0	0	4	4	2	6			
Resin Cake (SIDEWALL)	10	0	0	10	0	6	8			

Alarm Time Comparison and Spatial Distribution Results

- Average alarm time uncertainty between computational and experimental
 - 2.57 seconds
 - 10 second maximum difference
- CFD Validation
 - Smoke Meter, MIC, CO, and alarm time agreement
 - Virtual detector for similar volume cargo compartments
- Multi-Sensor Detector range
 - At least 913 cubic feet (707 FWD Cargo Compartment)
 - Subject to change relative to size of other compartments

Conclusions

- The Multi-Sensor Detector:
 - Complied with Code of Federal Regulations 14 CFR 25.858
 - Alarm within 60 seconds
 - Demonstrated faster response times than current detectors
 - Provided 100% nuisance immunity
 - Yielded a 100% success rate when subjected to 30 different tests
 - 5 Fire Sources
 - 5 Nuisance Sources
 - Provided a range of successful operation of at least 913 ft³
 - Relative to compartments of similar or lesser volume to 707
- Algorithm 5 most successful
 - Based on CO₂ gas, Temperature, %LT/ft, and MIC
 - Included the Rate of Rise parameter
- Computational Fluid Dynamic Model
 - Successfully simulate fires in compartments of similar volume to 707
 - Accurate virtual detector within Federal Regulation time (60 sec)
 - Average Alarm Time Uncertainty of 2.57 seconds

Recommendations

- Multi-Sensor Detector
 - Experimentation with a wider distribution of fire and nuisance sources
 - Larger matrix for improved algorithm development
 - Detector Manufacturing
 - Packaging
 - Dimensions
 - Total Cost (all 4 sensors)
 - More Gas Sensors
 - Total Hydrocarbons
 - Water Vapor
- Computational Fluid Dynamic Model
 - Improve Temperature data
 - Improve CO2 gas concentration data
 - Improve computational run-time to experimental real-time ratio

Acknowledgements

Rutgers Mechanical and Aerospace Engineering Dept.

■ Dr. Tobias Rossmann (Advisor)

■ Dr. Constantine Polymeropolous (Co-Advisor)

■ FAA Fire Safety Branch

■ Richard G. Hill (Director)

■ Gus Sarkos (Director)

■ Dave Blake (Engineering Mentor)

■ Rick Whedbee (Chief Technician)

■ Frank Gibbons (Technician)

■ Mark Materio (Technician)

Family and Friends

QUESTIONS?

APPENDIX

TABLE 5.1 EXTREME DETECTOR LEVELS

	MIC	Rate-Rise	Smoke Meter	Rate-Rise	CO	Rate of	CO2	Rate of	Temp.	Temp.
	(Volts)	(Volts/sec)	(%LT/Ft)	%LT/ft/sec	(ppm)	Rise CO	(ppm)	Rise CO2	Change (°F)	Rate of Rise
REFERENCE SOURCE										
Resin Cake (X-Location)	0.589	-0.522	48.743	-3.036	108.889	4.580	1497.116	49.026	9.831	0.815
PERIMETER TESTING										
Resin Cake (FWD)	0.583	-0.246	59.959	-1.522	86.243	3.571	1076.050	34.180	3.831	0.312
Resin Cake (AFT)	0.447	-0.340	55.755	-0.010	88.763	2.369	997.473	58.431	6.782	0.302
Resin Cake (SIDEWALL)	0.691	-0.391	53.372	-2.722	94.696	2.777	1245.117	24.185	5.352	0.332
NUISANCE SOURCE	-									
(X-LOCATION)										
Arizona Test Dust (Container)	2.801	-0.694	91.276	-1.798	0.088	0.047	0.135	0.078	0.037	0.018
Vaporizer (Fog Formation)	4.822	-0.029	41.823	-4.653	0.107	0.076	5.231	0.619	2.159	0.289
Exhaust Fumes (Forklift Loading)	4.845	-0.046	94.126	-0.149	493.172	45.242	712.394	55.237	0.294	0.137
Heat Gun (Heated Container)	1.854	-0.262	49.049	-3.982	0.274	0.106	0.539	0.144	22.967	0.889
Occupied Compartment (Human)	4.850	-0.023	98.966	-0.029	0.095	0.024	307.159	23.041	0.087	0.026
PERIMETER TESTING										
Arizona Test Dust (Under Pan)	2.705	-0.713	70.513	-10.582	0.045	0.028	0.103	0.087	0.046	0.031
Arizona Test Dust (2 Feet)	3.110	-0.665	60.638	-19.684	0.045	0.028	0.103	0.087	0.046	0.031
Arizona Test Dust (4 Feet)	4.990	-0.038	97.366	-1.308	0.045	0.028	0.103	0.087	0.046	0.031

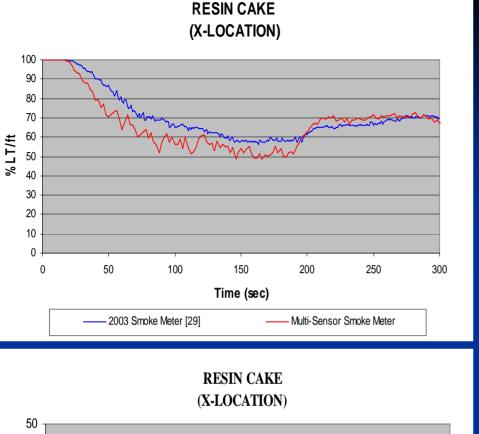
TABLE 5.2

EXTREME DETECTOR LEVELS

FIRE SOURCES	MIC	Rate-Rise	Smoke Meter	Rate-Rise	СО	Rate of	CO2	Rate of	Temp.	Temp.
	(Volts)	(Volts/sec)	(%LT/Ft)	%LT/ft/sec	(ppm)	Rise CO	(ppm)	Rise CO2	Change (°F)	Rate of Rise
(X-LOCATION)										
FLAMING Sources										
Denatured Alcohol (40mL)	4.552	-0.038	86.089	-1.239	1.624	0.119	1831.611	99.377	13.154	0.529
Alcohol Soaked Rags	1.430	-0.322	83.655	-1.184	14.191	1.428	1880.348	110.544	14.674	1.016
Polyurethane Foam	1.390	-0.736	91.385	-0.702	15.128	2.211	2098.261	321.620	23.051	2.844
SMOLDERING Sources										
Shredded Newspaper	1.491	-0.497	51.799	-2.808	171.324	24.803	1994.328	276.974	33.145	2.398
Suitcase	1.965	-0.103	64.367	-1.744	372.643	10.697	346.922	9.406	1.423	0.095
PERIMETER TESTING										
Alcohol Soaked Rags (Average)	1.341	-0.257	95.627	-0.195	21.074	1.508	1885.504	83.748	4.619	0.117
Polyurethane Foam (Average)	1.216	-0.247	94.604	-0.373	6.703	0.779	2070.223	192.934	5.699	0.200
Shredded Newspaper (Average)	0.785	-0.695	72.410	-2.449	157.376	19.125	1912.648	214.622	13.945	0.391
Alcohol Soaked Rags (FWD)	1.370	-0.271	96.955	-0.279	2426.186	112.548	1678.543	50.625	3.659	0.166
Polyurethane Foam (FWD)	1.278	-0.501	92.476	-0.754	1011.260	157.490	2044.346	385.902	5.910	0.276
Shredded Newspaper (FWD)	0.497	-0.990	74.829	-1.475	1194.612	140.035	1764.622	369.124	12.777	0.670
Alcohol Soaked Rags (AFT)	1.198	-0.287	90.787	-0.512	1385.884	172.563	2032.288	46.734	5.055	0.139
Polyurethane Foam (AFT)	1.074	-0.431	94.169	-0.375	838.361	43.948	2096.167	124.795	6.656	0.225
Shredded Newspaper (AFT)	0.942	-0.745	69.521	-3.422	1952.917	367.176	2060.719	429.367	15.327	0.651
	!			!	!	!	·	!		!

TABLE 5.3

ALARM TIMES


(SECONDS)

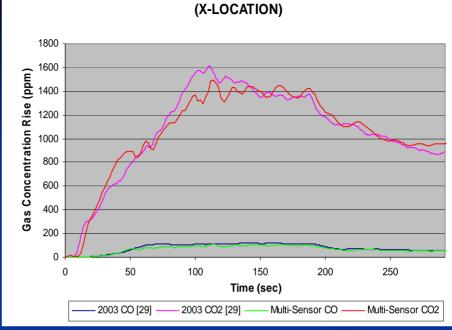
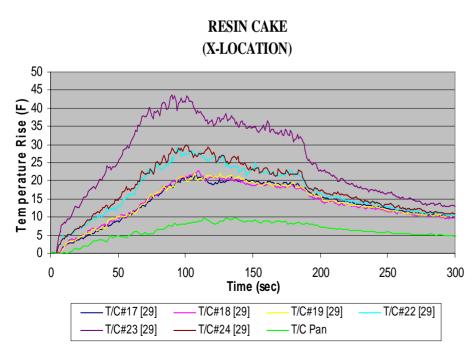
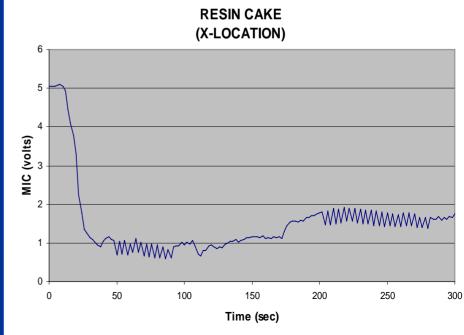
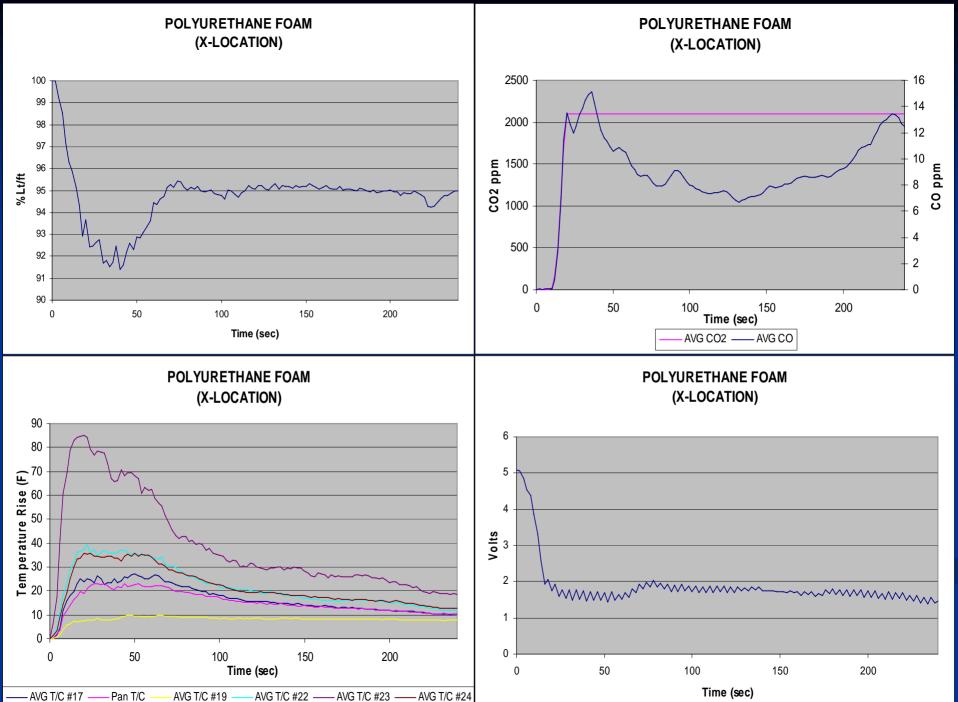
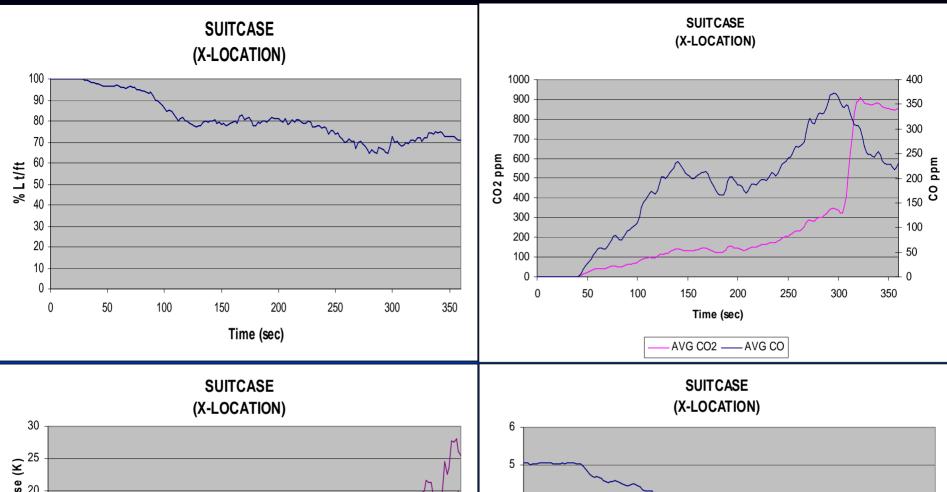

		ALGORITHM				PHOTOELECTRIC	IONIZATION	
	1	2	3	4	5			
REFERENCE SOURCE								
Resin Cake (X-Location)	20	18	18	24	14	20	20	
PERIMETER TESTING								
Resin Cake (FWD)	70	48	48	50	48	54	84	
Resin Cake (AFT)	50	50	50	54	50	50	42	
Resin Cake (SIDEWALL)	38	26	26	38	26	36	42	
NUISANCE SOURCE								
(X-LOCATION)								
Arizona Test Dust (Container)	X	X	X	X	X	6	8	
Vaporizer (Fog Formation)	X	X	X	X	X	8	X	
Exhaust Fumes (Forklift Loading)	X	X	X	X	X	70	X	
Heat Gun (Heated Container)	X	X	X	X	X	30	18	
Occupied Compartment (Human)	X	X	X	X	X	X	X	
PERIMETER TESTING								
Arizona Test Dust (Under Pan)	X	X	X	X	X	6	8	
Arizona Test Dust (2 Feet)	X	X	X	X	X	6	8	
Arizona Test Dust (4 Feet)	X	X	X	X	X	X	X	

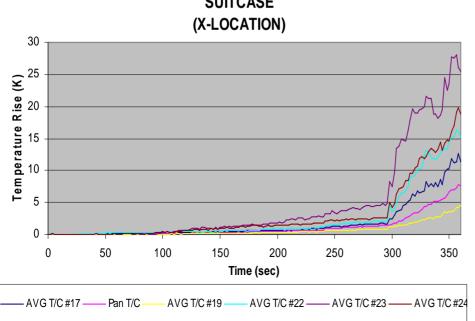
TABLE 5.4 ALARM TIMES

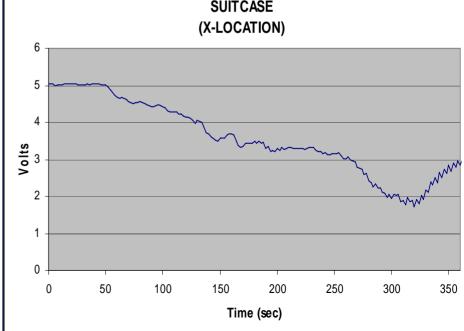

(SECONDS)

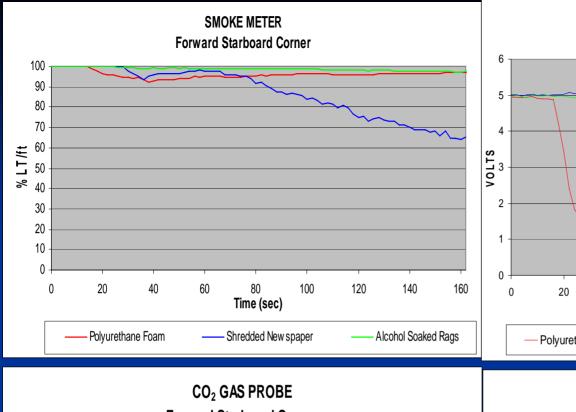

FIRE SOURCES		AL	GORITI	-IM	PHOTOELECTRIC	IONIZATION	
	1	2	3	4	5		
(X-LOCATION)							
FLAMING Sources							
Denatured Alcohol (40mL)	114	20	80	X	14	118	X
Alcohol Soaked Rags	22	14	14	18	14	32	14
Polyurethane Foam	12	12	12	14	10	38	10
SMOLDERING Sources							
Shredded Newspaper	20	16	16	18	16	20	18
Suitcase	60	44	44	46	44	62	126
PERIMETER TESTING							
Alcohol Soaked Rags (Average)	28	32	32	36	30	214	34
Polyurethane Foam (Average)	34	24	24	28	18	38	22
Shredded Newspaper (Average)	32	28	28	32	28	34	22
Alcohol Soaked Rags (FWD)	202	30	30	34	30	X	34
Polyurethane Foam (FWD)	24	24	24	28	22	22	20
Shredded Newspaper (FWD)	38	38	38	40	38	34	36
Alcohol Soaked Rags (AFT)	48	36	34	36	32	50	46
Polyurethane Foam (AFT)	46	40	40	46	34	52	36
Shredded Newspaper (AFT)	46	28	28	30	28	48	22

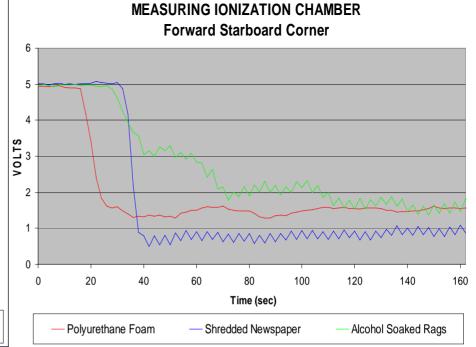


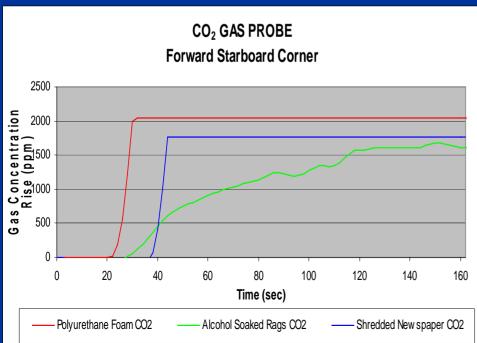


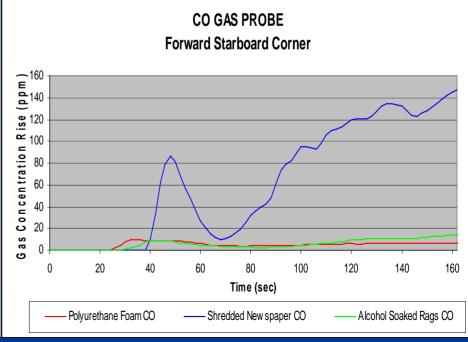

RESIN CAKE

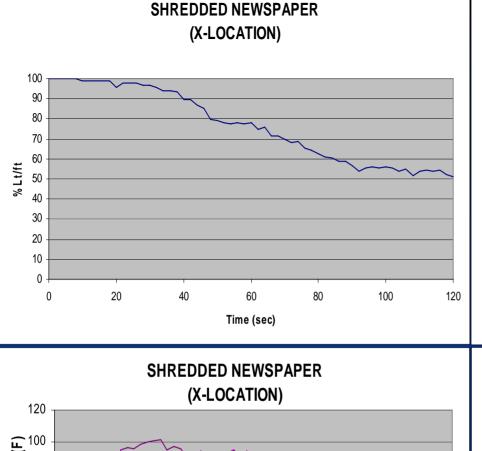


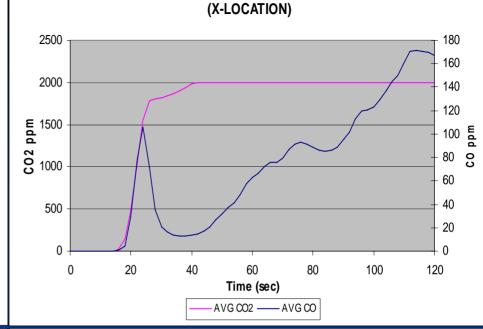


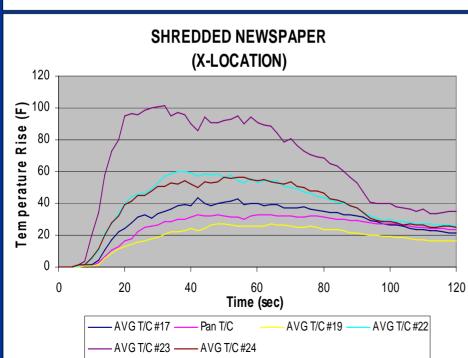


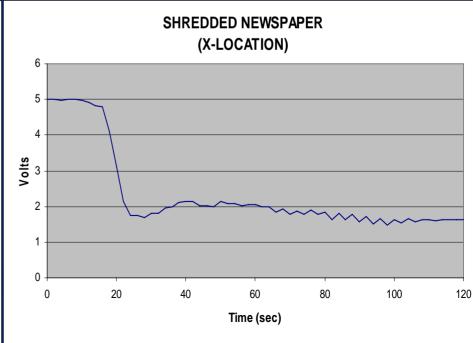


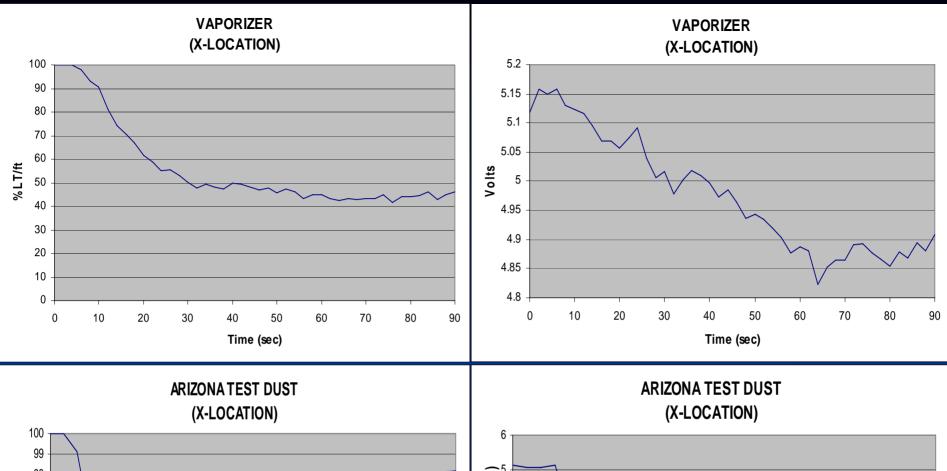


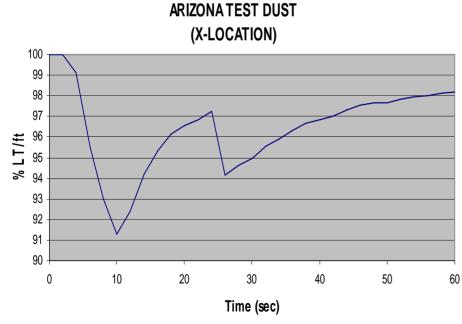


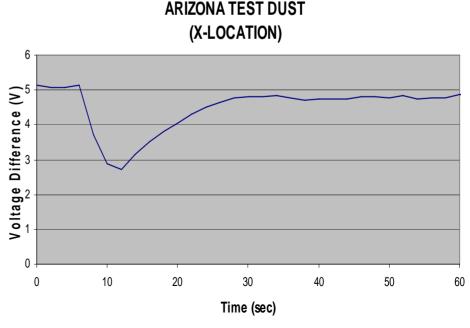


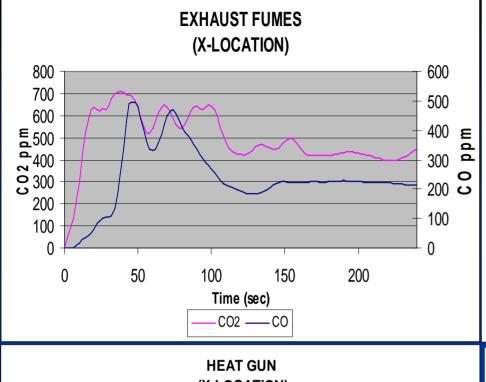


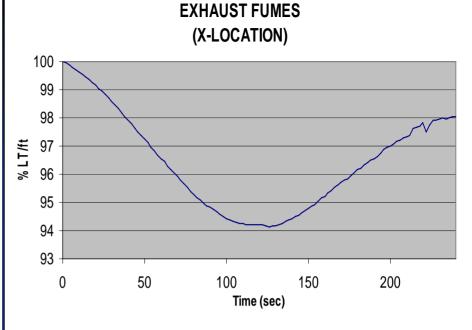


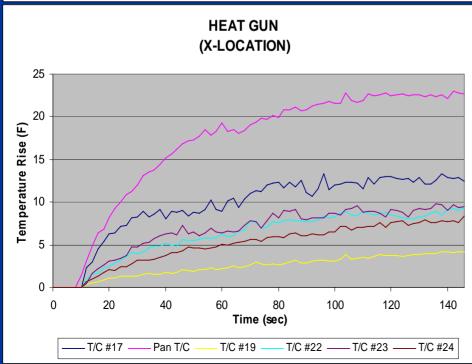


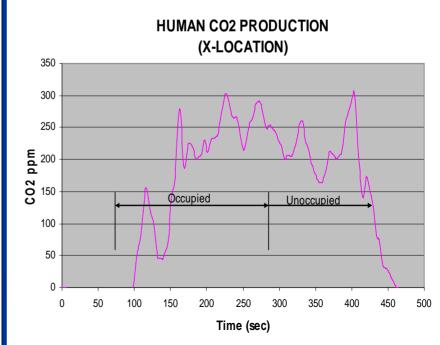


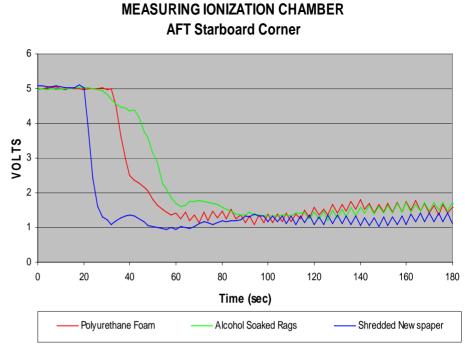

SHREDDED NEWSPAPER

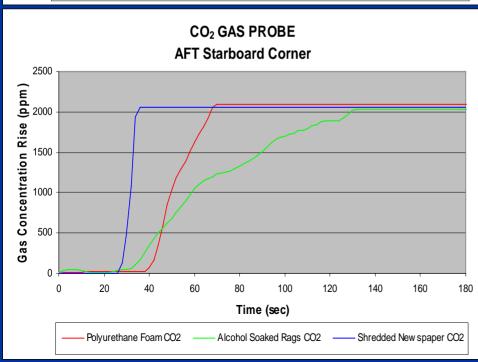


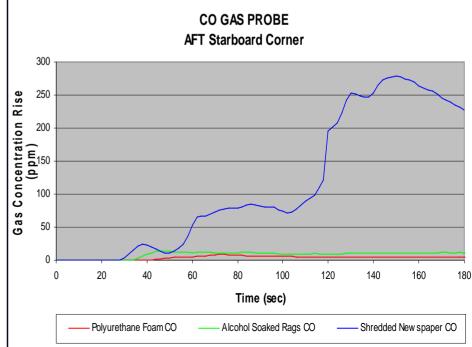


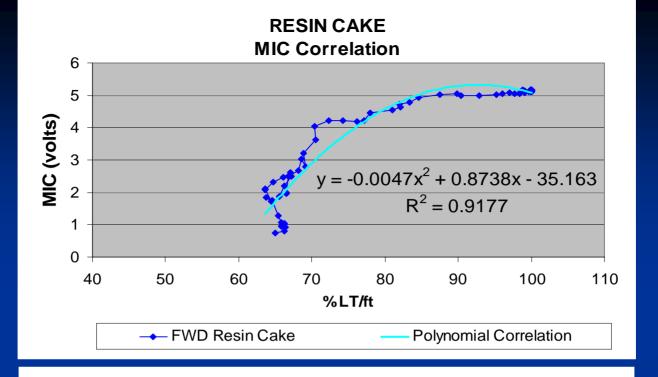


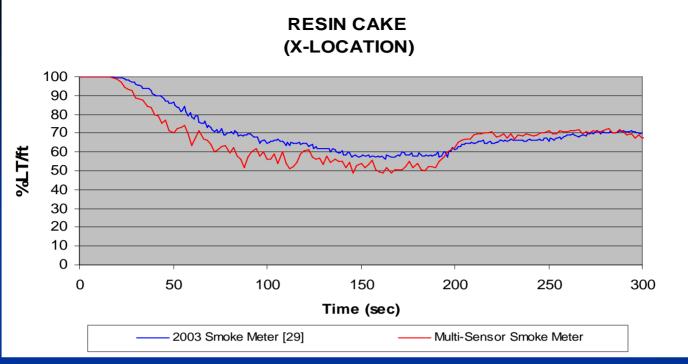


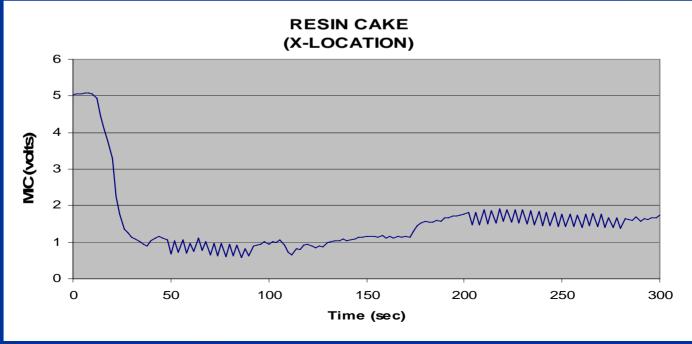


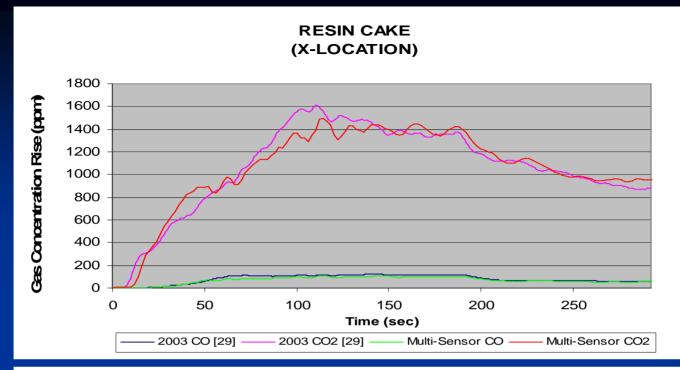


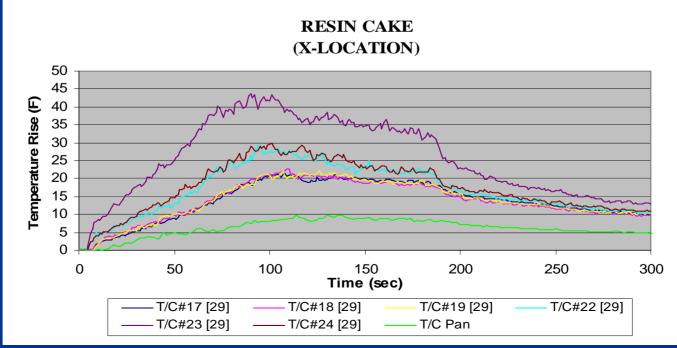





Resin Cake Reference Testing


- Resin Cake is:
 - FAA Repeatable Fire Source
 - Flaming fire source
 - 4" length, 4" width, 3/8" thick
- Resin Cake Composition
 - Nylon
 - Polyethylene
 - Polyvinyl Chloride
 - Polystyrene
 - Polybutylene Terephthalate
 - Polyurethane
- Nichrome wire heat source
 - 40 Volts AC
 - 2 mL heptane


- Purpose
 - Assess functionality; 4 sensors
 - Response Time
 - Accuracy
- Comparison to past data



RESIN CAKE

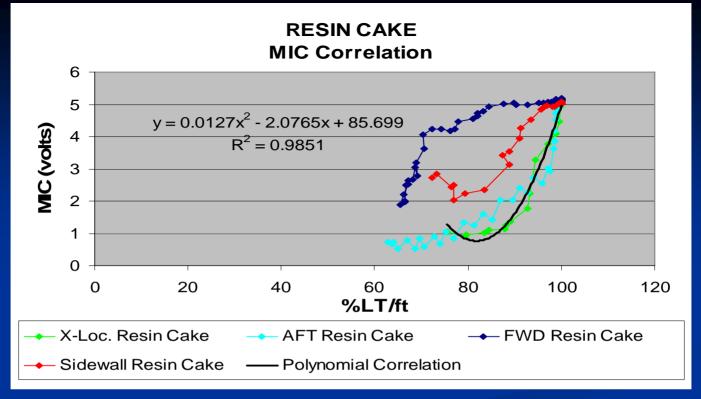
CFD Conversions

- Smoke Meter (%Lt/ft)
 - Beer's Law
 - $\sigma = \text{Specific extinction}$ coefficient (7400 m²/kg)

 - $C_{\text{soot}} = S_{\text{oot}} = C_{\text{soot}} = S_{\text{oot}} =$

- Gas Data (parts per million)

 - $\varrho_{\text{cell}} = \text{Gas density/output cell}$
 - $\varrho_{gas} = CO/CO_2$ gas density
 - $CO = 1.145 \text{ kg/m}^3$
 - $CO_2 = 1.833 \text{ kg/m}^3$


$$\frac{I}{I_0} = e^{-\int_0^L k(x)dx} \text{ where } k(x) = C_{soot}(x) * \rho_{cell}(x) * \sigma_s$$

$$C_{gas}(ppm) = C_{gas}(in\frac{kg}{kg}) \times (\frac{\rho_{cell}}{\rho_{gas}}) \times 10^6$$

$$C_{gas}(ppm) = C_{gas}(in\frac{kg}{kg}) \times (\frac{\rho_{cell}}{\rho_{gas}}) \times 10^6$$

Thermocouple (°F)

$$T(^{\circ}F) = [(T(^{\circ}K) - 273.15) \times 1.8] + 32$$

X and AFT Locations

$$Volts = 0.0127 * (x^2) - 2.0765 * (x) + 85.699$$

Forward Location

$$Volts = 0.0028*(x^2) - 0.3833*(x) + 15.372$$

Sidewall Location

$$Volts = 0.0047*(x^2) + 0.8738*(x) - 35.163$$